111 research outputs found

    Removal and Contraction Operations in nnD Generalized Maps for Efficient Homology Computation

    Get PDF
    In this paper, we show that contraction operations preserve the homology of nnD generalized maps, under some conditions. Removal and contraction operations are used to propose an efficient algorithm that compute homology generators of nnD generalized maps. Its principle consists in simplifying a generalized map as much as possible by using removal and contraction operations. We obtain a generalized map having the same homology than the initial one, while the number of cells decreased significantly. Keywords: nnD Generalized Maps; Cellular Homology; Homology Generators; Contraction and Removal Operations.Comment: Research repor

    3D Well-composed Polyhedral Complexes

    Full text link
    A binary three-dimensional (3D) image II is well-composed if the boundary surface of its continuous analog is a 2D manifold. Since 3D images are not often well-composed, there are several voxel-based methods ("repairing" algorithms) for turning them into well-composed ones but these methods either do not guarantee the topological equivalence between the original image and its corresponding well-composed one or involve sub-sampling the whole image. In this paper, we present a method to locally "repair" the cubical complex Q(I)Q(I) (embedded in R3\mathbb{R}^3) associated to II to obtain a polyhedral complex P(I)P(I) homotopy equivalent to Q(I)Q(I) such that the boundary of every connected component of P(I)P(I) is a 2D manifold. The reparation is performed via a new codification system for P(I)P(I) under the form of a 3D grayscale image that allows an efficient access to cells and their faces

    Topological signature for periodic motion recognition

    Get PDF
    In this paper, we present an algorithm that computes the topological signature for a given periodic motion sequence. Such signature consists of a vector obtained by persistent homology which captures the topological and geometric changes of the object that models the motion. Two topological signatures are compared simply by the angle between the corresponding vectors. With respect to gait recognition, we have tested our method using only the lowest fourth part of the body's silhouette. In this way, the impact of variations in the upper part of the body, which are very frequent in real scenarios, decreases considerably. We have also tested our method using other periodic motions such as running or jumping. Finally, we formally prove that our method is robust to small perturbations in the input data and does not depend on the number of periods contained in the periodic motion sequence.Comment: arXiv admin note: substantial text overlap with arXiv:1707.0698

    Geometric Objects and Cohomology Operations

    Get PDF
    Cohomology operations (including the cohomology ring) of a geometric object are finer algebraic invariants than the homology of it. In the literature, there exist various algorithms for computing the homology groups of simplicial complexes but concerning the algorithmic treatment of cohomology operations, very little is known. In this paper, we establish a version of the incremental algorithm for computing homology which saves algebraic information, allowing us the computation of the cup product and the effective evaluation of the primary and secondary cohomology operations on the cohomology of a finite simplicial complex. We study the computational complexity of these processes and a program in Mathematica for cohomology computations is presented.Comment: International Conference Computer Algebra and Scientific Computing CASC'02. Big Yalta, Crimea (Ucrania). Septiembre 200

    Simplification Techniques for Maps in Simplicial Topology

    Get PDF
    This paper offers an algorithmic solution to the problem of obtaining "economical" formulae for some maps in Simplicial Topology, having, in principle, a high computational cost in their evaluation. In particular, maps of this kind are used for defining cohomology operations at the cochain level. As an example, we obtain explicit combinatorial descriptions of Steenrod k-th powers exclusively in terms of face operators

    An algorithm to compute minimal Sullivan algebras

    Full text link
    In this note, we give an algorithm that starting with a Sullivan algebra gives us its minimal model. This algorithm is a kind of modified AT-model algorithm used to compute in the past other kinds of topology information such as (co)homology, cup products on cohomology and persistent homology. Taking as input a (non-minimal) Sullivan algebra AA with an ordered finite set of generators preserving the filtration defined on AA, we obtain as output a minimal Sullivan algebra with the same rational cohomology as AA
    corecore